Impact of Sealed Joints on Performance of Thin Whitetopping at MnROAD

Transportation Research Board 91st Annual Meeting
January 25th, 2012

Tom Burnham, P.E.
Minnesota Department of Transportation

Office of Materials and Road Research
Outline

• Whitetopping
• Joint sealing concepts
• MnROAD Test Sections
• Test Section Performance
• Conclusions and Recommendations
Whitetopping

- A pavement rehabilitation technique
- Concrete over distressed asphalt pavement
- Asphalt milled to maintain grade and improve layer bonding
- More often an “inlay” than an “overlay”
- Typically concrete layer thicknesses range = 3” to 7.5”
- Smaller panel sizes for thinner overlays
Whitetopping

Typical terms

- Ultrathin Whitetopping (UTW) = 3” to 4.5” [Requires bond]
- Thin Whitetopping (TWT) = 5” to 7.5” [Bond adds life]
- Bonded Concrete Overlays of Asphalt Pavements (BCOA) = UTW
- Unbonded Concrete Overlays of Asphalt Pavements (UBCOA) = TWT
History in Minnesota

- First “modern” project
 - Olmsted County CSAH 10 (1982) [6” TWT]

- First Mn/DOT project (included test sections)
 - TH30 Amboy (1993) [6” TWT]

- Test Sections
 - MnROAD UTW & TWT (1997) [3”, 4”, 6”]
 - MnROAD TWT (2004) [4” to 5”]
 - MnROAD TWT (2008) [6”]

- First Mn/DOT “production” project
 - I-35 North Branch (2009) [6” TWT]
History in Minnesota

- Other Minnesota projects
 - CSAH 7 Hutchinson (2009)
 - CSAH 46 Albert Lea (2009)
 - TH23 Marshall (2009/10)
 - CSAH 9 Harris (2010)
 - TH 56 West Concord (2010)
 - Olmsted County CSAH 22 (2011)
 - Anoka County CSAH 22 & CSAH 18 (2011)
 - McLeod County CSAH 2 & CSAH 25 (2011)

Many others currently under consideration as option in Alternate Bid projects
Why Seal or Fill Joints?

Results:

- Water deteriorates bond between layers
- Panels crack due to loss of support
- Ice expansion can move panels apart = more water in joint
- Water erosion deteriorates asphalt shoulders
Why Seal or Fill Joints?
MnROAD Test Sections (2004)

- Cells 60 and 62 constructed with single saw cut joints filled with hot-pour asphalt sealant
- Cells 61 and 63 constructed with no sealant
- Panel size = 5 ft. L x 6 ft. W [1.52 m L x 1.83 m]
Traffic

- I-94 live interstate traffic
- “Accelerated” loading for 4” and 5” PCC
- CESAL’s 2004-2011 = 6.5 million
Performance

Sections with sealed/filled joints performed better!
Panel Cracking (Fall 2010)

Unsealed Joints
4” PCC = 55% cracked panels
5” PCC = 8% cracked panels

Sealed Joints
4” PCC = 11% cracked panels
5” PCC = 11% cracked panels
Distress Survey

CELL 63
50 - 100 ft

4 inch PCC with unsealed joints
Cell 63 (Fall 2010)
4 inch PCC with unsealed joints

Cracked and “shattered” panels
Cell 63 (Spring 2011)

4 inch PCC with unsealed joints

Joints sealed in Fall 2010 to slow deterioration
Cell 63 (2010)

4 inch PCC with unsealed joints

Widening joints

Spalling
Distress Survey

CELL 62
100 - 150 ft

4 inch PCC with sealed joints
Cell 62 (2010)

4 inch PCC with sealed joints

“Tight” joints (virtually no spalling)

Unbonded, with some HMA deterioration
Distress Survey

CELL 61
0 - 50 ft

5 inch PCC with unsealed joints
Cell 61 (2010)

5 inch PCC with unsealed joints

Spalling

Unbonded, with some HMA deterioration
Distress Survey

CELL 60
100 - 150 ft

5 inch PCC with sealed joints
Cell 60 (2010)
5 inch PCC with sealed joints

“Tight” joints (virtually no spalling)
Unbonded, no HMA deterioration
Sealing Cost Beneficial?

- Narrow joints, but a lot of them!
- Cost of hot pour asphalt sealant for Cell 60
 - 220 ft long, all joints, including lane/shoulder
 - Approx. 21 gals of sealant @ $0.60/lb = $107.10
 - Approx. $2600/mile
 - Labor cost? (Usually bid as incidental)
Conclusions

- MnROAD ultrathin (4”) whitetopping test sections have shown a significant difference in performance related to joint sealing
 - Loss of critical layer bonding and heavy traffic have resulted in substantial cracking in panels with unsealed joints

- MnROAD thin (5”) whitetopping test sections have shown a noticeable difference in joint performance related to joint sealing
 - Widening joints
 - Increased joint spalling
Recommendations

- Seal joints in whitetopping inlays
 - Protects layer bonding = slows panel cracking
 - Reduces joint spalling/panel separation
 - Extends shoulder life

- Determine cost effectiveness of sealing for thicker whitetopping designs
 - Currently monitoring 6” thick MnROAD whitetopping Cells 114-914, constructed in 2008 with unsealed joints

- Provide adequate drainage path for water
 - Keep the water out, or find a way to get it out fast!
Questions?